extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×D5).D6 = F5×S4 | φ: D6/C1 → D6 ⊆ Out C22×D5 | 20 | 12+ | (C2^2xD5).D6 | 480,1189 |
(C22×D5).2D6 = C2×A4⋊F5 | φ: D6/C2 → S3 ⊆ Out C22×D5 | 30 | 12+ | (C2^2xD5).2D6 | 480,1191 |
(C22×D5).3D6 = Dic3.D20 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).3D6 | 480,429 |
(C22×D5).4D6 = D30.34D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).4D6 | 480,430 |
(C22×D5).5D6 = D30.D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).5D6 | 480,432 |
(C22×D5).6D6 = (C2×C12).D10 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).6D6 | 480,437 |
(C22×D5).7D6 = (C2×C60).C22 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).7D6 | 480,438 |
(C22×D5).8D6 = (C4×Dic3)⋊D5 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).8D6 | 480,439 |
(C22×D5).9D6 = C60.44D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).9D6 | 480,440 |
(C22×D5).10D6 = (C4×Dic15)⋊C2 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).10D6 | 480,442 |
(C22×D5).11D6 = C60.88D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).11D6 | 480,444 |
(C22×D5).12D6 = Dic15⋊D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).12D6 | 480,484 |
(C22×D5).13D6 = D10⋊C4⋊S3 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).13D6 | 480,528 |
(C22×D5).14D6 = Dic15⋊2D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).14D6 | 480,529 |
(C22×D5).15D6 = D6⋊D20 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).15D6 | 480,530 |
(C22×D5).16D6 = (C2×Dic6)⋊D5 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).16D6 | 480,531 |
(C22×D5).17D6 = C60⋊4D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).17D6 | 480,532 |
(C22×D5).18D6 = D6.9D20 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).18D6 | 480,533 |
(C22×D5).19D6 = C12⋊D20 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).19D6 | 480,534 |
(C22×D5).20D6 = D30⋊2D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).20D6 | 480,535 |
(C22×D5).21D6 = D30⋊12D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).21D6 | 480,537 |
(C22×D5).22D6 = Dic15.10D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).22D6 | 480,538 |
(C22×D5).23D6 = C60⋊10D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).23D6 | 480,539 |
(C22×D5).24D6 = Dic15.31D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).24D6 | 480,540 |
(C22×D5).25D6 = C12⋊2D20 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).25D6 | 480,541 |
(C22×D5).26D6 = D30⋊6D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).26D6 | 480,609 |
(C22×D5).27D6 = C6.(D4×D5) | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).27D6 | 480,610 |
(C22×D5).28D6 = (C2×C30).D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).28D6 | 480,612 |
(C22×D5).29D6 = C6.(C2×D20) | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).29D6 | 480,613 |
(C22×D5).30D6 = (S3×C10)⋊D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).30D6 | 480,641 |
(C22×D5).31D6 = Dic15⋊5D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).31D6 | 480,643 |
(C22×D5).32D6 = (C2×C6)⋊D20 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).32D6 | 480,645 |
(C22×D5).33D6 = Dic15⋊18D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 240 | | (C2^2xD5).33D6 | 480,647 |
(C22×D5).34D6 = D10.D12 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 120 | 8- | (C2^2xD5).34D6 | 480,248 |
(C22×D5).35D6 = D10.4D12 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 120 | 8+ | (C2^2xD5).35D6 | 480,249 |
(C22×D5).36D6 = (C2×C60)⋊C4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 120 | 4 | (C2^2xD5).36D6 | 480,304 |
(C22×D5).37D6 = C3⋊(C23⋊F5) | φ: D6/C3 → C22 ⊆ Out C22×D5 | 120 | 4 | (C2^2xD5).37D6 | 480,316 |
(C22×D5).38D6 = F5×C3⋊D4 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 60 | 8 | (C2^2xD5).38D6 | 480,1010 |
(C22×D5).39D6 = C3⋊D4⋊F5 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 60 | 8 | (C2^2xD5).39D6 | 480,1012 |
(C22×D5).40D6 = D4×C3⋊F5 | φ: D6/C3 → C22 ⊆ Out C22×D5 | 60 | 8 | (C2^2xD5).40D6 | 480,1067 |
(C22×D5).41D6 = (D5×Dic3)⋊C4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).41D6 | 480,469 |
(C22×D5).42D6 = D10.19(C4×S3) | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).42D6 | 480,470 |
(C22×D5).43D6 = Dic3⋊4D20 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).43D6 | 480,471 |
(C22×D5).44D6 = Dic15⋊13D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).44D6 | 480,472 |
(C22×D5).45D6 = (C6×D5).D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).45D6 | 480,483 |
(C22×D5).46D6 = Dic3⋊D20 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).46D6 | 480,485 |
(C22×D5).47D6 = D10.16D12 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).47D6 | 480,489 |
(C22×D5).48D6 = D10.17D12 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).48D6 | 480,490 |
(C22×D5).49D6 = D10⋊1Dic6 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).49D6 | 480,497 |
(C22×D5).50D6 = D10⋊2Dic6 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).50D6 | 480,498 |
(C22×D5).51D6 = Dic3×D20 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).51D6 | 480,501 |
(C22×D5).52D6 = Dic15.D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).52D6 | 480,506 |
(C22×D5).53D6 = D10⋊4Dic6 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).53D6 | 480,507 |
(C22×D5).54D6 = D20⋊8Dic3 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).54D6 | 480,510 |
(C22×D5).55D6 = C15⋊17(C4×D4) | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).55D6 | 480,517 |
(C22×D5).56D6 = Dic15⋊9D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).56D6 | 480,518 |
(C22×D5).57D6 = S3×D10⋊C4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).57D6 | 480,548 |
(C22×D5).58D6 = D30.27D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).58D6 | 480,549 |
(C22×D5).59D6 = D30⋊4D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).59D6 | 480,551 |
(C22×D5).60D6 = D30⋊5D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).60D6 | 480,552 |
(C22×D5).61D6 = C23.17(S3×D5) | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).61D6 | 480,624 |
(C22×D5).62D6 = (C6×D5)⋊D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).62D6 | 480,625 |
(C22×D5).63D6 = Dic15⋊3D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).63D6 | 480,626 |
(C22×D5).64D6 = Dic3×C5⋊D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).64D6 | 480,629 |
(C22×D5).65D6 = Dic15⋊16D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).65D6 | 480,635 |
(C22×D5).66D6 = D30⋊8D4 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).66D6 | 480,653 |
(C22×D5).67D6 = C2×D20⋊5S3 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).67D6 | 480,1074 |
(C22×D5).68D6 = C2×D20⋊S3 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).68D6 | 480,1075 |
(C22×D5).69D6 = D5×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | 8- | (C2^2xD5).69D6 | 480,1098 |
(C22×D5).70D6 = C2×Dic5.D6 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).70D6 | 480,1113 |
(C22×D5).71D6 = C2×C30.C23 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).71D6 | 480,1114 |
(C22×D5).72D6 = D10.20D12 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).72D6 | 480,243 |
(C22×D5).73D6 = C2×Dic3×F5 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).73D6 | 480,998 |
(C22×D5).74D6 = C22⋊F5.S3 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | 8- | (C2^2xD5).74D6 | 480,999 |
(C22×D5).75D6 = C2×D6⋊F5 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).75D6 | 480,1000 |
(C22×D5).76D6 = C2×Dic3⋊F5 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).76D6 | 480,1001 |
(C22×D5).77D6 = S3×C22⋊F5 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 60 | 8+ | (C2^2xD5).77D6 | 480,1011 |
(C22×D5).78D6 = C22×S3×F5 | φ: D6/S3 → C2 ⊆ Out C22×D5 | 60 | | (C2^2xD5).78D6 | 480,1197 |
(C22×D5).79D6 = Dic3⋊C4⋊D5 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).79D6 | 480,424 |
(C22×D5).80D6 = D10⋊Dic6 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).80D6 | 480,425 |
(C22×D5).81D6 = (D5×C12)⋊C4 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).81D6 | 480,433 |
(C22×D5).82D6 = (C4×D5)⋊Dic3 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).82D6 | 480,434 |
(C22×D5).83D6 = C60.67D4 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).83D6 | 480,435 |
(C22×D5).84D6 = C60.68D4 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).84D6 | 480,436 |
(C22×D5).85D6 = C4×C15⋊D4 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).85D6 | 480,515 |
(C22×D5).86D6 = D6⋊(C4×D5) | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).86D6 | 480,516 |
(C22×D5).87D6 = C4×C3⋊D20 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).87D6 | 480,519 |
(C22×D5).88D6 = C15⋊20(C4×D4) | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).88D6 | 480,520 |
(C22×D5).89D6 = D6⋊C4⋊D5 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).89D6 | 480,523 |
(C22×D5).90D6 = D10⋊D12 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).90D6 | 480,524 |
(C22×D5).91D6 = C60⋊D4 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).91D6 | 480,525 |
(C22×D5).92D6 = C12⋊7D20 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).92D6 | 480,526 |
(C22×D5).93D6 = C2×D10⋊Dic3 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).93D6 | 480,611 |
(C22×D5).94D6 = (C2×C30)⋊D4 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).94D6 | 480,639 |
(C22×D5).95D6 = (C2×C6)⋊8D20 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).95D6 | 480,640 |
(C22×D5).96D6 = C2×D6.D10 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).96D6 | 480,1083 |
(C22×D5).97D6 = C2×D12⋊5D5 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).97D6 | 480,1084 |
(C22×D5).98D6 = C2×C12.28D10 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 240 | | (C2^2xD5).98D6 | 480,1085 |
(C22×D5).99D6 = D5×C4○D12 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | 4 | (C2^2xD5).99D6 | 480,1090 |
(C22×D5).100D6 = D10.10D12 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).100D6 | 480,311 |
(C22×D5).101D6 = C2×C4×C3⋊F5 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).101D6 | 480,1063 |
(C22×D5).102D6 = C2×C60⋊C4 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).102D6 | 480,1064 |
(C22×D5).103D6 = (C2×C12)⋊6F5 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | 4 | (C2^2xD5).103D6 | 480,1065 |
(C22×D5).104D6 = C2×D10.D6 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).104D6 | 480,1072 |
(C22×D5).105D6 = C23×C3⋊F5 | φ: D6/C6 → C2 ⊆ Out C22×D5 | 120 | | (C2^2xD5).105D6 | 480,1206 |
(C22×D5).106D6 = C4×D5×Dic3 | φ: trivial image | 240 | | (C2^2xD5).106D6 | 480,467 |
(C22×D5).107D6 = D5×Dic3⋊C4 | φ: trivial image | 240 | | (C2^2xD5).107D6 | 480,468 |
(C22×D5).108D6 = D5×C4⋊Dic3 | φ: trivial image | 240 | | (C2^2xD5).108D6 | 480,488 |
(C22×D5).109D6 = D5×D6⋊C4 | φ: trivial image | 120 | | (C2^2xD5).109D6 | 480,547 |
(C22×D5).110D6 = D5×C6.D4 | φ: trivial image | 120 | | (C2^2xD5).110D6 | 480,623 |
(C22×D5).111D6 = C2×D5×Dic6 | φ: trivial image | 240 | | (C2^2xD5).111D6 | 480,1073 |
(C22×D5).112D6 = S3×C2×C4×D5 | φ: trivial image | 120 | | (C2^2xD5).112D6 | 480,1086 |
(C22×D5).113D6 = C2×D5×D12 | φ: trivial image | 120 | | (C2^2xD5).113D6 | 480,1087 |
(C22×D5).114D6 = C22×D5×Dic3 | φ: trivial image | 240 | | (C2^2xD5).114D6 | 480,1112 |